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Note 

Some Extensions of the Lax-Wendroff Method 

Lax and Wendroff [l] gave a well-known difference scheme of second order accuracy 
for solving a system of equations in conservation law form. But not all systems of 
partial differential equations are, or can easily be put, in conservation form. For 
instance, although the Eulerian equations of fluid dynamics in one space variable 
occur naturally in conservation form, the Lagrangian equations do not. And the 
Lagrangian form is often the more natural description to use in physical applications. 
For instance, the ideas contained in this note first arose in connection with integrations 
of the collapse of a spherical cloud under the influence of its own gravity. A Lagrangian 
description is then very appropriate, both because it collapses along with the flow, 
and also because it allows a simple expression for the gravitational forces. Richtmyer 
and Morton [2, Sect. 12.71 have shown how the Lagrangian equations can be con- 
verted to conservation-law form in the planar case. However, their device involves 
the elimination of the particle displacement R, and does not work for cylindrically 
or spherically symmetric flows. (The Eulerian equations for cylindrically and spheri- 
cally symmetric flows also lack conservation form.) In any case, a major reason for 
using a Lagrangian formulation in the first place normally is that it gives particle 
displacements directly. 

The Taylor series expansion in time that Lax and Wendroff used to derive their 
algorithm can clearly be applied to equations that are not in conservation law form. 
This note considers certain specific applications in fluid dynamics, and shows that such 
expansions can lead to unstable difference schemes. Fortunately, the difference 
schemes can also be recast in stable forms. Interestingly, the instabilities that may 
occur are not primarily due to the fact that the equations involved lack conservation 
form. Similar instabilities can also arise with equations of conservation form when 
staggered grids are used. 

Consider now the Lagrangian equations for the spatially symmetric flow of a 
barotropic fluid in 01 dimensions which, using the notation of Richtmyer and Morton, 
are 

aR(r, 0 Ck4 
___ = u(r, t), at = 

at vo [g-l g 9 P = P(P). 

Richtmyer and Morton [2, Eqs. (12.1O)J give a difference scheme of the leapfrog type 
for solving these equations, in which the thermodynamic variables are evaluated at 
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midpoints of the spatial grid. The equation of mass conservation, for instance, is 
approximated as 

(2) 

Richtmyer and Morton’s scheme has second order accuracy when p = p(p), though 
not when a more general energy equation must be used. However, as their Fig. 12.4 
shows, their scheme cannot handle shock waves. This defect can be remedied by the 
addition of an artificial viscosity, but they state that they regard this device as super- 
seded by the Lax-Wendroff method [2, p. 3201. This latter method is inherently 
dissipative, and can handle shocks implicitly. 

To obtain an alternative and dissipative difference scheme of second order accuracy 
for the Lagrangian Eqs. (I), we can follow Lax and Wendroff and expand in time: 

R;+l = Rj” + ujn At + ; gj; (At)2, 

,;+1 

The first derivative au/at can be evaluated as in [2], 

(3) 

(4) 

The density p can be found using Eq. (2), and p can be found from the known function 
p = p(p). The second derivative Su/at2 can be evaluated by differentiating the second 
of Eqs. (1), and then differencing in the same style: 

5% n 
( 1 

WY2 ujn __ = -(a - 1) vo (ri)a-l pi'+1,2 - P;--~:z 
at2 i Ar 

The derivative ap/& needed here is equal to p’(p) +/at, and can be evaluated from the 
time derivative of the equation of mass conservation, in a manner similar to the way 
in which p is evaluated from the original equation, as 

8P n 
-G&F- ( 1 at 

_ TV, (R”-lu)i”,, - (R”-‘u); 
j+1/2 - @$+a - O-2 . 

(6) 

But the resulting explicit difference scheme is anti-dissipative and unstable. This is 
easily seen by applying the usual kind of approximate local stability analysis, in which 
coefficient variations are ignored. Also, since the analysis is local, we ignore spatial 
divergences by setting 01 = 1 and simply considering the plane case. The terms in p and 
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p can be eliminated, and we can look for separable solutions of the difference equations 
of the form 

&n = Ap&kAr, ujn = Bp&‘kAr, (7) 

for some constants A and B. Equations (3) then yield the relations 

<A = A + B dt + A ( cp;rdt)2 (cos 0 - I), 

.$B = B + ( cp2rdr )’ (cos b’ - 1) (++ + B), 13 = k Ar. 

Here c is the velocity of sound. If we introduce the symbol CL: 

tL= 
cv,p At 

Ar ’ 

then the two solutions for 5 given by Eqs. (8) are 

[ = 1 - 2~~ sin2(0/2) &2& sin(8/2). (9) 

The magnitude of both roots is [l + 4~~ sin4(0/2)1112, and hence, unlike the Lax- 
Wendroff scheme, this scheme is unstable. 

However, a stable scheme can be obtained by the simple expedient of replacing the 
first of Eqs. (3) by the equally accurate relation 

R;+l = Ri” + ujn+l At - ; ($); (At)“. 
3 

The finite difference scheme is still explicit if one calculates in order for U, r, p and 
ap/iYt at each time step. It may now also be stable, because the equation for E is 
modified to 

(2 - 2([1 - 2~2 sin2(0/2)] + [l - 4~~ sin4(8/2)] = 0. (11) 

The roots of Eq. (11) are a complex conjugate pair for which ] t I2 = 1 - 4~~ sin4(0/2) 
if 0 < 2~~ sin2(0/2) < 1, and are both zero when p2 sin2(0/2) = l/2. The roots are 
real and of opposite sign for larger values of pz sin2(8/2). The root that is larger in 
magnitude becomes -1 when 2~~ sin2(0/2) = 5112 - 1. Hence, the difference scheme 
is stable, and is also dissipative of fourth order, provided 

cpVo At 
‘<c”= A,. < [; (51j2 - f2 = 0.7862. (12) 

This condition is akin to the Courant-Friedrichs-Lewy condition [3], because pV,/Ar 
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is the spatial separation between two Lagrangian grid points, though more restrictive 
than it because of the presence of the numerical factor 0.7862 in place of 1. 

The instability that we have just encountered might appear to be a consequence of 
the fact that u = i3Rjat and, in this plane case, au/at = p2c2V02i32R/ar2. This pair of 
equations is of a form that Richtmyer and Morton advise against [2, p. 2941. However, 
a more fundamental cause appears to be the use of the staggered grid that is implicitly 
involved in our analysis. To see this, consider the more general case of plane adiabatic 
flow, for which the p = p(p) relation is replaced by the differential equation 

aP aP au I = ($2 t = -c2p2vo 7. 
at 

We can continue using the same kind of staggered grid differencing, but now also 
need an equation for predicting the pressure, such as 

VL+1 
Pj+1/2 = d+1,2 + ($:',,,, At + f g&,;+,,, (At) . 

An equation for a2p/at2 can of course be derived by differentiating that for splat, 
and Eqs. (3) and (14) then together give sufficient relations for advancing the integra- 
tion. But, as Eqs. (1) and (13) show, the variable R is not directly involved in the 
interrelation between p and u. A further stability analysis in which we set py+I,2 = 
Cpei(~+l/2ucLlr in addition to Eqs. (7) yields 

[A = A + Bdt - ivo;(fr)2 sin - (;), 

(B = j-3 - 2iv>$dr sin 2 + p2B(cos 0 - l), (“j 

fC = c- 2ic2p2VoB Ll t dr sin i + p2C(cos 0 - l), 
0 

(15) 

and the second and third equations are independent of the first. They yield precisely 
the eigenvalues of Eq. (9). Hence we again have an unstable difference scheme, but 
again it may be stabilized by replacing one of the Taylor series expansions for advan- 
cing u and p by an expansion modeled after Eq. (IO) in which the first derivative term 
is evaluated at the forward time. The third eigenvalue of Eqs. (I 5) is E = 1, so that the 
scheme that we have just proposed is dissipative of fourth order only for p and U, but 
not for R. 

The fact that it is really the staggered grid that is causing the instabilities can be 
confirmed by considering a slight variant of the Lax-Wendroff procedure for the 
equations 

?L!+*$=o, (16) 
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where A is a constant matrix. Suppose that a staggered grid is used for evaluating the 
first time derivatives via the first space derivatives to give 

uy+l = At 
Uj” - dx AW+l,2 - U?-I,Z) + ; ($ A)’ <Uj”,l - 2U,” + u,“_J. (17) 

Then with the same definition of 8 as before, the eigenvalue g of the amplification 
matrix corresponding to an eigenvalue h of A is 

2iA At sin S _ 
g=l-- Ax 2 W) 

The presence of the term 2 sin(B/2), in place of the sin 0 of the original scheme, has 
the effect of changing stability to instability because Eq. (18) is of the same form as 
Eq. (9). This fact does not appear to have been noted before, presumably because the 
scheme of Eq. (17) is not practical for general forms of Eq. (16). It does become 
practical if the components of U fall into two equal sets, with the x-derivatives of one 
being related to the t-derivatives of the other. This essentially is what happens for the 

I I I 
2.0- 

0.7 0.8 0.9 
r  

I.U 

FIG. 1. Au instantaneous increase in pressure by a factor 4 at the boundary r = 0 of an initially 
uniform plane slab of isothermal gas causes a shock to propagate into the undisturbed gas with velocity 
2, in units of the velocity of sound. The condensed gas behind the shock moves with velocity 312. 
The filled circles show the solution for u at time I = 0.5 of a 100 point Lagrangian calculation 
performed using the methods described in the paper. There is a rigid wall at t = 2, and the exact 
solution is marked by solid lines. The nth Lagrangian point is initially at r = 0.2(n - I), and the 
values of pllz and (ap/at)l/z needed for the finite difference scheme are obtained using simple extra- 
polation formulas of second order accuracy. The maximum time step consistent with Eq. (12), 
applied for each interval, was used. The error in the computed position of the left hand free boundary 
is 2 x 1O-6. The points adjacent to the shock front show the characteristic oscillations, but the 
discontinuity is clearly ‘and accurately marked. 
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Lagrangian equations of fluid flow. Then staggered spatial grids can be used, provided 
values updated in time are used in half of the extrapolation formulae as above. 

The type of difference scheme proposed in this paper has been used extensively and 
successfully for integrations of the collapse of isothermal self-gravitating spheres 141. 
The Richtmyer-Morton scheme was satisfactory for smoothly generated collapses, 
but not for the collapses generated by a sudden increase in pressure at the outer 
boundary of the sphere. Such an increase causes a shock to be formed instantly at the 
outer boundary, and to then propagate inwards. A simple test problem for the new 
difference scheme is the calculation of the isothermal shock for the corresponding 
problem with a uniform plane slab of gas, for which an exact analytical solution is 
easily found. Figure 1 shows a comparison between a numerical and an analytical 
solution, and is qualitatively very similar to Fig. 12.6 of [2], which displays a shock 
calculation performed using the original Lax-Wendroff scheme applied to Eulerian 
equations of motion. 
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